
Moving Target Techniques:

Cyber Resilience through Randomization, Diversity, and Dynamism

Hamed Okhravi and Howard Shrobe

Overview:
The static nature of computer systems makes them vulnerable to cyber attacks. Consider a situation where
an attacker wants to compromise a remote system running a specific application. The attacker need only
find one vulnerability in a local copy of that application. Since all copies of that application are identical
and static, the attacker can leverage that vulnerability to exploit the application on a remote machine.
Worse yet, the same vulnerability can be exploited to attack thousands or millions of other machines that
run the same application. Also, since the internals of the system changes little over time, the same attack
is likely to succeed for a long time. The situation is exacerbated by the fact that any reconnaissance
information collected on the system by the attackers will also be valid for a long time. This creates an
imbalance in favor of attacks.

A promising approach to cyber resilience that attempts to rebalance the cyber landscape is known as
cyber moving target (MT) (or just moving target) techniques. Moving target techniques change the static
nature of computer systems to increase both the difficulty and the cost (in effort, time, and resources) of
mounting attacks. Simply put, these techniques turn systems into moving targets that will be hard for
cyber attackers to compromise. MT techniques leverage randomization, diversity, and dynamism to
achieve resilience. Randomization refers to introducing non-determinism to the internal structures of a
system while preserving its correct functionality; diversity refers to introducing heterogeneity among
computer systems so that they cannot be compromised by the same attack; and dynamism refers to
changing the properties of a system over time so that the same attack cannot compromise it in the future.
MT technique can implement any subset of these three goals.

In order to understand the different domains of MT techniques, we focus on the component that is
actually subject to movement. For ease of design and implementation, a computer often consists of
multiple layers of software and hardware, commonly referred to as the software stack although the stack
includes the hardware elements as well. Each layer relies on other layers for its proper operation and
function.

Figure 1 presents one representation of such a layered design. At the very bottom of the software stack is
the hardware components of the machine. These include the processor, the motherboard, the memory
cards, and other peripheral devices and cards such as the sound card, video card, etc. Above this layer
resides the operating system which is responsible for controlling and managing the hardware components
and providing an abstraction of them to the application. The abstraction provided by the operating system
is the key in interoperability and compatibility of the applications because the applications do not
typically interact directly with the hardware components; rather, they use the provided operating system
abstraction. The abstraction layer, which is the interface that the operating system provides to the
application, is sometimes referred to as the runtime environment. The hardware and operating system of a
machine are collectively called the platform. Above the operating system reside the applications which

are used to process and present data. The data itself and its representation can be considered a layer atop
the application. Finally, many machines in today’s systems are not isolated devices, and in fact, they are
connected to other machines through a network. In general, five domains of MT techniques address
dynamically changing the abovementioned software stack layers.

Figure 1: Different domains of cyber moving target techniques

Dynamic Network:
Techniques in the dynamic network domain change the properties of the network to complicate network-
based attacks. One such technique frequently changes the Internet protocol (IP) addresses of the machines
in an enterprise network [9]. This IP rotation technique can thwart rapidly propagating worms that use a
fixed hit list of IP addresses to infect a network. Another technique, known as an overlay network, creates
dynamically changing encrypted tunnels (i.e., encrypted communication connections over public
networks).

Dynamic networks is an appealing class of techniques to reduce an adversary’s ability to conduct
reconnaissance on a network, map a defended network, or select specific hosts for a targeted attack.
However, these techniques face two important obstacles to deployment.

First, because many dynamic network techniques lack a well-articulated threat model, it may be unclear
to network defenders what threat needs to be mitigated and thus how best to deploy the defensive
technique. Consider a technique that isolates a small group of machines from the larger network (or
Internet). If hosts within the isolated network can still communicate to hosts beyond the isolated network,
protected hosts may be vulnerable to any number of client-side attacks that exploit vulnerabilities within
the unprotected hosts’ web browsers or document viewers. For example, targeted spear phishing
(fraudulent email messages that try to elicit information such as passwords to Internet accounts) could

penetrate a protected network through the network’s connections to unprotected hosts. Dynamic network–
based MT techniques do not address these types of attacks.

Second, many dynamic network techniques introduce randomization into the fundamental protocols that
are used on the Internet. However, the effectiveness of this randomization at stopping attacks is unclear.
Suppose an MT technique randomizes network identifiers (such as an IP address). If service discovery
protocols such as the domain name service (DNS) are used to convert human-readable domain names to
machine-readable IP addresses, these services may undo any potential security benefit obtained through
the MT technique itself, provided that the attacker can issue DNS queries.

Dynamic Platform:
The dynamic platform domain consists of cyber defensive techniques that dynamically change the
properties of the computing platform. Consider a system that runs a given application on top of multiple
operating systems and hardware architectures. For example, the application can run on top of a platform
consisting of the Fedora operating system and x86 processor architecture or a different platform
consisting of the FreeBSD operating system and ARM processor architecture. Such a system can be
implemented, for instance, by compiling the application to different processor architectures and
implementing a platform-independent checkpointing mechanism to preserve the current state of the
application during platform changes [4]. Such a system constitutes a dynamic platform moving target
technique. Other examples of dynamic platform techniques include a voting system that runs an
application on top of different platforms, each platform voting on the output of the system [5], or a system
that randomizes the internals of the operating system that are unimportant for the correct functionality of
the application.

The major benefit of the dynamic platform techniques is preventing platform-dependent attacks. Crafting
a successful exploit against a system usually requires that an attacker consider the exact platform of that
system. This is similar to the process of developing software for a given system. As a result, by changing
the computing platform, an MT technique can mitigate attacks that are platform-dependent. An attacker
can develop a stronger attack by incorporating different exploits against different platforms, but this will
increase the cost and workload of the attack, which is the main goal of MT techniques. Note that dynamic
platform techniques cannot mitigate attacks that target a higher-level application logic flaw and do not
depend on the platform. For example, SQL injection attacks [cite], which are attacks that inject a
malicious command into a database application using a flaw in the high-level logic of the application, are
typically not mitigated by dynamic platform techniques.

While dynamic platforms MT techniques offer the potential to defeat platform-dependent attacks, they
can increase the complexity of the overall system, are generally difficult to effectively manage, and can
actually be detrimental to security if used inappropriately [6]. Perhaps the greatest challenge from a
system complexity and management perspective is the synchronization of application state across the set
of diverse platforms. Examples of such program state could include open data files, user input from a
keyboard or mouse, or network traffic that needs to be correctly delivered to a specific running process
(while correctly maintaining connection-specific state in the kernel). Synchronizing these resources
among the dynamic platforms in real-time requires a complex management infrastructure that can migrate
state with speed and agility. Reasoning about the correctness of this management infrastructure may be

challenging in practice, but at the very least, the necessity to keep program state synchronized across
several distinct platforms increases system complexity considerably.

Another potential limitation of dynamic platforms is that requiring multiple distinct platforms can actually
increase the attack surface of the system. Attack surface refers to components of the system that are
exposed to a potential attacker and can be the target of the attack. Suppose that a dynamic platform MT
technique migrates an application between three platforms: Linux, Windows, and Mac. If the attacker has
an exploit that works on the Windows host, the attacker simply needs to wait until the application
migrates to the Window host to launch the exploit and compromise the application. Making the program
migration less predictable can help, provided that the attacker cannot reliably guess which platform is
running the application. As a result, dynamic platform techniques are only effective in cases where the
diversity is in-series and not in-parallel. In other words, the successful attack must require all platforms
to be compromised, not any platform. For instance, if the attack requires a long time to succeed (long
duration disruption of service), a dynamic platform can be helpful. Otherwise, for short-duration attacks,
it can be detrimental to security.

Dynamic Runtime Environment:
Techniques in the dynamic runtime environment domain dynamically change or randomize the
abstraction provided by the operating system to the applications, without hindering any important
functions of the system. One of the most important abstractions in a computer system is memory. For
various reasons including isolation of different applications, compatibility, and interoperability, memory
locations presented to an application in most modern computer systems is not a direct representation of
the actual physical memory. Rather, a redirection is applied by the operating system in an abstraction
known as the virtual memory. A well-known dynamic runtime environment MT technique randomizes
what addresses in the virtual memory are used by the application. The technique is typically referred to as
Address Space Layout Randomization (ASLR) [7] and is implemented in most modern operating systems
including Linux, Windows, Mac OSX, Android, and iOS. By randomizing the addresses, ASLR makes
exploit development more difficult for an attacker because attackers do not know where to place their
malicious code on the system. Other dynamic runtime environment techniques include those that change
the processor instruction encoding (a.k.a. Instruction Set Randomization -- ISR), or finer-grained variants
of ASLR in which smaller regions of memory are randomized.

Dynamic runtime environments are among the most practical and widely deployed MT techniques. Yet,
despite their successes, there are two important weaknesses than can allow an attacker to circumvent the
defense.

First, ASLR requires memory secrecy. That is, if the contents of memory are disclosed or leaked to an
attacker, the attacker may be able to use this information to defeat ASLR. Such memory disclosures are
possible via separate vulnerabilities (known as buffer over-read vulnerabilities), where the contents of
memory are read beyond the allowed boundary, disclosing how memory has been randomized. Without
strict memory secrecy, an attacker can still circumvent the protections provided by ASLR to launch code
injection or code reuse attacks (e.g., ROP) [cite].

Second, the granularity of randomization in many ASLR implementations is low, which reduces the
overall protection provided by the technique. For example in Linux, only the start location of certain
memory regions is randomized by default. The executable program code itself is often not compiled with
ASLR support. As such, this section of the program’s memory is not protected and can be a vector of
exploitation.

Dynamic Software:
Techniques in the dynamic software application domain (or simply the dynamic software domain)
randomize or diversify the internals of the software application. One technique from this domain is called
the multi-compiler [8], which creates different versions of software executables (binaries) from the same
source code (e.g. written in C) that perform the same function, but are different internally. The different
internals can arise from different actual processor instructions that are used during the compilation
process or using the same instructions in different locations inside the executable. Note that a given copy
of the executable with a given set of internals may never change, but various machines in an enterprise
run different executables. In other words, this technique can create spatial diversity (diversity among
many machines) as opposed to temporal diversity (diversity of one machine over time). The major benefit
of dynamic software techniques is to mitigate the impact of large-scale attacks. If an exploit is crafted
against a given variant of the executable, it will have a small chance of working against other variants of
that executable. Hence, an attacker cannot compromise many machines at once. This is contrary to many
existing systems where if an attacker develops malware, it can successfully compromise millions of
machines running the same target application. In recent sophisticated attacks, attackers reuse parts of the
benign code of the target application itself to achieve malicious behavior. Known as code reuse attacks or
return-oriented programming (ROP) attacks [9], these attacks can successfully bypass existing defenses
that detect or stop foreign pieces of code in order to mitigate attacks. Dynamic software techniques can be
effective against such attacks by making the benign application code diverse.

Dynamic software techniques often use specialized compiler techniques to produce executable software
variants with different and unpredictable memory layouts. These variants could use padding to make the
size of memory regions unpredictable, or insert No-operation (NOP) instructions within executable code
that do not perform any operation, but can make code reuse attacks harder to launch because they change
the location of other instructions. These techniques, however, suffer from a variety of weaknesses.

First, recompilation to produce a software variant requires access to a program’s source code, and is not
compatible with proprietary, third-party software for which source code is not made available.
Furthermore, reasoning about the correctness of the compiled variant can be challenging, since one cannot
simply verify a cryptographic measurement of the executable file to ensure that the code has not been
(maliciously) modified.

Second, software is often compiled with special optimization flags that reduce the space and/or
computational complexity of the compiled binary code. MT techniques that explicitly compile the
software to introduce randomness in the memory layout may not be compatible with space saving or

compute-time saving optimization passes performed by the compiler. Consequently, the dynamic
software is unlikely to maintain the same performance properties as the ideally optimized compiled code.

Third, dynamic software techniques that use execution monitors to instrument and compare multiple
versions of an executable introduce significant performance costs. For example, if an MT technique has
two variants, there is at least a 2x performance cost relative to native execution of the application (in
terms of processor, memory, and I/O utilization). This cost may be reasonable for protecting one or two
applications where the highest degree of security is required, but likely does not scale to protect all
applications running on a host.

Fourth, information leakage attacks can also be used against dynamic software techniques (similar to
dynamic runtime environment techniques) to bypass them. If attackers can leak how an executable has
been diversified, they can attack it as if it was not diversified at all.

Dynamic Data:
Techniques in the dynamic data domain change the format, syntax, representation, or encoding of the
application data to make attacks more difficult. In this domain, the diversity can be temporal or spatial as
well. One technique in this domain dynamically changes the representation of the user identifier (UID) in
Linux operating systems. This identifier is used to determine what access rights a user has. One type of
attack tries to increase the access level of a user in order to gain access to otherwise sensitive resources by
changing the UID value to that of an administrator. This type of attack is an example of a larger class of
attacks known as privilege escalation attacks. The UID randomization dynamic data technique can
mitigate such an attack.

Dynamic data techniques offer the promise of protecting data from theft or unauthorized modification, but
these techniques also suffer from two important weaknesses.

First, there can be a lack of diversity in the number of acceptable data encodings. For example, to encode
binary data, one could use base-64 or hexadecimal which are both commonly used in practice, but there
are few other accepted standards for data encoding. Additional non-standardized encodings are certainly
possible, but may increase the complexity of interoperating with other system components.

Second, the use of additional data encodings may also increase the attack surface of the software. For
each encoding type, the software must have the proper parsing code to encode and decode the data. The
additional parsing code itself could have security-relevant software bugs.

Summary:
One way of understanding the benefits of MT techniques is by looking at the steps of a cyber attack that
they are trying to mitigate. In order to successfully compromise a system, an attacker must progress
through several steps, as depicted in Table 1. The first step is reconnaissance during which an attacker
collects information about the target. The second step is accessing the victim during, which the attacker
collects enough information about the configurations, applications, and software versions that are running
on the target machine in order to develop an attack against it. During the third step, the attacker develops
an exploit against a vulnerability in the target machine. Then the attack is launched in the next step which

may include, for example, a malicious network packet sent to the target machine or luring the user to click
on a maliciously crafted link or using a malicious thumb drive. After the attack is launched and verified,
the attackers may take additional steps to maintain their foothold on the target machine (i.e., persistence).
Together these steps are referred to as the cyber kill-chain. Table 1 illustrates the main step of the cyber
kill-chain that each domain of MT techniques tries to mitigate.

Table 1: Attack phases disrupted by each MT domain.

MT Domain
Attack Phases

Reconnaissance Access
Attack

Development
Attack
Launch

Persistence

Dynamic Network

Dynamic Platforms

Dynamic Runtime Env.

Dynamic Software

Dynamic Data

Effectiveness of Moving Target Techniques

Weaknesses of existing MT techniques motivated us to develop a set of criteria for evaluating their
effectiveness. By studying attacks against well-known MT techniques we identified three major problems
that contribute to the weaknesses of such techniques. First, in some cases the dynamic change in the
system is too slow. In such cases, an attacker can observe the current state of the system using
information leakage attacks, craft an attack against the current state, and compromised the system by
launching the attack, all within the interval between two system changes. Second, in some other cases, the
space of movement is too small. For example, consider a system that has two possible states. While
attackers may not know the current state of the system, they will have 50% chance of success in attacking
the system by pure guessing. In many MT techniques, attackers can also reduce the amount of uncertainty
they are facing by quickly testing every possibility. This is also known as the brute force attack. Third, in
some MT techniques, parts of an attack surface are dynamic, whereas other parts remain static. The static
parts become a target of attack because they do not present any uncertainty for the attacker.

Using the above insights, we developed three criteria for evaluating an MT technique: timeliness,
unpredictability, and coverage, as define below.

 Timeliness: The extent to which a movement can be applied between the time at which an
attacker makes an observation and time at which an attack is completed.

 Unpredictability: The extent to which the outcome of current or future movements of the attack
surface are indeterminable by an attacker.

 Coverage: The extent to which all elements of a defended attack surface are subject to
movement.

Timeliness evaluates how fast the system moves. The actual time between movements depends
on the attack model of concern for the technique. Hence, the definition of timeliness considers
the possible attacker observations. In fact, an optimal MT technique should tie movement events
to possible actions that can leak information to an attacker [cite].

Unpredictability evaluates the uncertainty faced by an attacker. A quantitative metric for
unpredictability is entropy.

Coverage evaluates whether or not the MT technique moves every element of an attack surface.
If some parts of the attack surface remain static, they can become the target of attacks.

We have also developed rigorous, quantitative metrics for these criteria [11], the discussion of
which is beyond the scope of this book chapter. We use these metrics to evaluate MT techniques
and analyze the protection they provide against cyber attacks.

Practical Considerations

When deciding to deploy an MT technique, there are many practical issues to consider. The defender
should understand the potential performance impact of the MT technique on the system. Many MT
techniques offer security against strong adversaries, but incur performance penalties, which could be
prohibitively high depending on the application. Understanding the performance requirements of the
system and the expected performance costs of the MT technique can help defenders make the right
decision about deploying MT defenses.

Moreover, the defender should understand the effectiveness of the MT technique before it is deployed.
Techniques that offer high effectiveness against realistic attack models should be selected before those
that suffer from false positives or negatives, or those that protect against an unrealistic threat. Hence, an
important part of this consideration is having a well-defined attack model that describes the exact types of
attacks that are of concern and that are relevant to the system being protected.

Finally, the defender should understand the composibility of MT and non-MT techniques. MT techniques
do not solve all security problems, but rather are best suited toward defending against specific threat
models. For example, a defender may want to defend against code injection attacks using ASLR. But to
achieve defense-in-depth, signature-based network monitoring can be used to examine network traffic in
real time and drop all packets that appear to contain code injection payloads. Understanding how well MT
and non-MT techniques can be composed to achieve the necessary protection is paramount to effective
cyber resilience.

Future Directions
Future work in this area will focus on multiple directions. In designing new MT techniques or evaluating
existing ones, it is imperative to analyze whether or not the additional complexity created by the
randomization or diversification of the system’s components is actually exposed to a potential attacker.
As discussed earlier, many MT techniques create complexity in a system component, but when attacking
the system, an attacker can avoid or bypass the complexity. This is usually achieved through information
leakage attacks or attacks that work regardless of the specific internals of a component (e.g. higher level
logic flaws in the application). The flip side of this challenge is to ensure that the complexity is not
exposed to the system’s operators and maintainers. Ease of deployment, operation, and maintenance are
important for widespread deployment of cyber defensive techniques.

Furthermore, additional research is needed in the area of evaluation and assessment of MT techniques.
For cyber security to transition from a craft to a science, it is important to have concrete, meaningful, and
repeatable evaluation methods. An imperative part of evaluation is developing metrics that define
measurement units of security and can be used to evaluate the absolute security offered by an MT
technique and a comparative assessment of it against other techniques. Meaningful and objective
evaluation of MT techniques can benefit from a variety of evaluation approaches including abstract
analysis, modeling and simulation, testbed experimentation, and real-world measurements in operational
systems.

Finally, an important future direction for MT research is to examine, study, and evaluate the
composability of MT techniques with other MT and non-MT defenses. Cyber defenses in general and MT
techniques specifically, do not provide a “silver bullet,” protecting against every known cyber attack. As a
result, in practice, multiple defenses should be combined to provide adequate protection. Understanding
the impact of these defenses on each other, and the composability challenges that arise from them, is an
open research area.

REFERENCES

1. D. Kaufman, An Analytical Framework for Cyber Security, Defense Advanced Research Projects
Agency, 2011, available at www.dtic.mil/dtic/tr/fulltext/u2/a552026.pdf.

2. H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding Focus in the Blur of Moving
Target Techniques,” IEEE Security & Privacy, vol. 12, no. 2, 2014, pp.16–26.

3. H. Okhravi, A. Comella, E. Robinson, and J. Haines, “Creating a Cyber Moving Target for
Critical Infrastructure Applications Using Platform Diversity,” International Journal of Critical
Infrastructure Protection, vol. 5, no. 1, 2012, pp. 30–39.

4. B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M. Franz, “Multi-variant
Program Execution: Using Multi-core Systems to Defuse Buffer-Overflow Vulnerabilities,” Proceedings
of the IEEE International Conference on Complex, Intelligent and Software Intensive Systems, 2008, pp.
843–848.

5. H. Okhravi, J. Riordan, and K. Carter, “Quantitative Evaluation of Dynamic Platform Techniques
as a Defensive Mechanism,” pp. 405-425 in Research in Attacks, Intrusions and Defenses, Lecture Notes

in Computer Science, A. Stavrou, H. Bos, and G. Portokalidis eds. Cham, Switzerland: Springer
International Publishing, 2014.

6. PaX Team, “PaX address space layout randomization (ASLR),” 2003, available at
https://pax.grsecurity.net/docs/aslr.txt.

7. M. Franz, “E Unibus Pluram: Massive-Scale Software Diversity as a Defense Mechanism,”
Proceedings of the 2010 Workshop on New Security Paradigms, 2010, pp. 7–16.

8. H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function
Calls (on the x86),” Proceedings of the 14th ACM Conference on Computer and Communications
Security, 2007, pp. 552–561.

9. S. Antonatos, P. Akritidis, E.P. Markatos, and K.G. Anagnostakis, “Defending Against Hitlist
Worms Using Network Address Space Randomization,” Computer Networks: The International Journal
of Computer and Telecommunications Networking, vol. 51, no. 12, 2007, pp. 3471–3490.

10. J. Seibert, H. Okhravi, and E. Söderström, “Information Leaks Without Memory Disclosures:
Remote Side Channel Attacks on Diversified Code,” Proceedings of the 21st ACM SIGSAC Conference
on Computer and Communications Security, 2014, pp. 54–65.

11. D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H.Okhravi, “Timely Rerandomization for
Mitigating Memory Disclosures,” Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 268–279.

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This material is based upon work supported by the Department of Defense under Air Force
Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Department of Defense.

